3 research outputs found

    Location, seasonal, and functional characteristics of water holding containers with juvenile and pupal Aedes aegypti in Southern Taiwan:A cross-sectional study using hurdle model analyses

    Get PDF
    BackgroundAedes aegypti carries several viruses of public health importance, including the dengue virus. Dengue is the most rapidly spreading mosquito-borne viral disease in the world. Prevention and control of dengue mainly rely on mosquito control as there is no antiviral treatment or a WHO-approved vaccine. To reduce the Ae. aegypti population, studying the characteristics of their habitats is necessary. Aedes aegypti prefer breeding in artificial water holding containers in peridomestic or domestic settings. Their juveniles (1st - 4th instar larvae and pupae) have a tendency to cluster in certain types of containers. To inform control strategies, it is important to assess whether the pupae subgroup has a distinct distribution by container type as compared to the overall group of juveniles. The objective of this study was to assess for distinct predictors (location, season, and function) of Ae. aegypti juveniles and pupae numbers in water holding containers by applying hurdle model analyses.MethodologyThe field component of this study was carried out from November 2013 to July 2015 in Southern Taiwan where annual autochthonous dengue has been reported for decades. Water holding containers with stagnant water were identified in a predefined urban area in Kaohsiung City (KH) and a rural area in Pingtung County. Given that mosquito survey data often include many containers with zero Ae. aegypti, a negative binomial hurdle model was applied to model the association between location, seasonal and functional characteristics of the water holding containers and the number of Ae. aegypti in each container.ResultsThe results showed that Ae. aegypti were almost exclusively present in the urban area. In this area, the negative binomial hurdle model predicted significantly more juveniles as well as pupae Ae. aegypti in water holding containers during the wet season when compared to the dry season. Notably, the model predicted more juveniles in containers located on private property compared to those on government property, irrespective of season. As for pupae, the model predicted higher amounts in indoor containers used for water storage compared to outdoor water storage containers, irrespective of season. However, for the specific category ‘other water receptacle’, higher amounts of pupae were predicted in outdoor compared to indoor in water receptacles, such as flower pot saucers and water catchment buckets.ConclusionsThe difference in predictors for juveniles and the pupae subgroup was identified and it may be of importance to the control strategies of the authorities in KH. At present the authorities focus control activities on all water holding containers found on government property. To improve the ongoing control efforts in KH, the focus of control activities maintained by the KH authorities should be expanded to indoor water storage containers and outdoor water receptacles on both private and government properties to adequately address habitats harboring greater numbers of pupae. In addition, it is proposed to increase community engagement in managing water in all types of water holding containers located on privately owned properties (indoor and outdoor), especially during wet season.</div

    Epidemic risk of arboviral diseases : determining the habitats, spatial-temporal distribution, and abundance of immature Aedes aegypti in the urban and rural areas of Zanzibar, Tanzania

    No full text
    BACKGROUND In Zanzibar, little is known about the arboviral disease vector Aedes aegypti in terms of abundance, spatio-temporal distribution of its larval habitats or factors associated with its proliferation. Effective control of the vector requires knowledge on ecology and habitat characteristics and is currently the only available option for reducing the risk of arboviral epidemics in the island nation of Zanzibar. METHODOLOGY : We conducted entomological surveys in households and surrounding compounds from February to May 2018 in the urban (Mwembemakumbi and Chumbuni) and rural (Chuini and Kama) Shehias (lowest government administrative unit) situated in the Urban-West region of Unguja island, Zanzibar. Larvae and pupae were collected, transported to the insectary, reared to adult, and identified to species level. Characteristics and types of water containers were also recorded on site. Generalized linear mixed models with binomial and negative binomial distributions were applied to determine factors associated with presence of Ae. aegypti immatures (i.e. both larvae and pupae) or pupae, alone and significant predictors of the abundance of immature Ae. aegypti or pupae, respectively. RESULTS : The survey provided evidence of widespread presence and abundance of Ae. aegypti mosquitoes in both urban and rural settings of Unguja Island. Interestingly, rural setting had higher numbers of infested containers, all immatures, and pupae than urban setting. Likewise, higher House and Breteau indices were recorded in rural compared to the urban setting. There was no statistically significant difference in Stegomyia indices between seasons across settings. Plastics, metal containers and car tires were identified as the most productive habitats which collectively produced over 90% of all Ae. aegypti pupae. Water storage, sun exposure, vegetation, and organic matter were significant predictors of the abundance of immature Ae. aegypti. CONCLUSIONS : Widespread presence and abundance of Ae. aegypti were found in rural and urban areas of Unguja, the main island of Zanzibar. Information on productive habitats and predictors of colonization of water containers are important for the development of a routine Aedes surveillance system and targeted control interventions in Zanzibar and similar settings.S1 Table. Distribution of mosquito genera/species by season in rural and urban areas of Zanzibar. aPercent of all mosquitoes by setting or season.Danish International Development Agency (DANIDA) through phase II of the Building Stronger Universities project, at the State University of Zanzibar, Tanzania.https://journals.plos.org/plosntdsam2021Zoology and Entomolog

    Outcomes of Patients Presenting with Mild Acute Respiratory Distress Syndrome Insights from the LUNG SAFE Study

    No full text
    BACKGROUND: Patients with initial mild acute respiratory distress syndrome are often underrecognized and mistakenly considered to have low disease severity and favorable outcomes. They represent a relatively poorly characterized population that was only classified as having acute respiratory distress syndrome in the most recent definition. Our primary objective was to describe the natural course and the factors associated with worsening and mortality in this population. METHODS: This study analyzed patients from the international prospective Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) who had initial mild acute respiratory distress syndrome in the first day of inclusion. This study defined three groups based on the evolution of severity in the first week: "worsening" if moderate or severe acute respiratory distress syndrome criteria were met, "persisting" if mild acute respiratory distress syndrome criteria were the most severe category, and "improving" if patients did not fulfill acute respiratory distress syndrome criteria any more from day 2. RESULTS: Among 580 patients with initial mild acute respiratory distress syndrome, 18% (103 of 580) continuously improved, 36% (210 of 580) had persisting mild acute respiratory distress syndrome, and 46% (267 of 580) worsened in the first week after acute respiratory distress syndrome onset. Global in-hospital mortality was 30% (172 of 576; specifically 10% [10 of 101], 30% [63 of 210], and 37% [99 of 265] for patients with improving, persisting, and worsening acute respiratory distress syndrome, respectively), and the median (interquartile range) duration of mechanical ventilation was 7 (4, 14) days (specifically 3 [2, 5], 7 [4, 14], and 11 [6, 18] days for patients with improving, persisting, and worsening acute respiratory distress syndrome, respectively). Admissions for trauma or pneumonia, higher nonpulmonary sequential organ failure assessment score, lower partial pressure of alveolar oxygen/fraction of inspired oxygen, and higher peak inspiratory pressure were independently associated with worsening. CONCLUSIONS: Most patients with initial mild acute respiratory distress syndrome continue to fulfill acute respiratory distress syndrome criteria in the first week, and nearly half worsen in severity. Their mortality is high, particularly in patients with worsening acute respiratory distress syndrome, emphasizing the need for close attention to this patient population.status: publishe
    corecore